
METHODS
PALIMPSEST

METHODS

What are the verbs of a program?

● Definition

● EXERCISE

● Declaration

● EXERCISE

● Naming

● Return type

● Scope

METHODS

An code object

that has

behaviors and

data.

// Class to express myself to the world.

public class YoWorldIExist
{

// Method to print string to console.
public void Speak(string phrase)
{

Debug.Log(phrase);
}

}

METHOD DEFINITION

Hey there, girl. Let’s learn about
methods!

Hey there, girl. Let’s learn about
methods!

WOOF!

// Class to define a dog.

public class Dog
{

//Variables describing a dog.
private int ageInYears;

// Method making the dog speak.
public void Speak(string phrase)
{

Debug.Log(phrase);
}

}

DOG CLASS

WHAT DATA DESCRIBES THIS DOG?

WHAT DOES THIS DOG DO?

Methods do tasks

for classes.

Which of the

things we

discussed are

‘tasks?’

METHOD DEFINITION
// Class to define a dog.

public class Dog
{

//Variables describing a dog.
private int ageInYears;

// Method making the dog speak.
public void Speak(string phrase)
{

Debug.Log(phrase);
}

}

EXERCISE

● Think of a character

● Think of behaviors

● Using pseudocode, make those

behaviors "methods"

● Bonus - what are some properties

of this character? How might you

express those?

METHOD
BENEFITS

● Helps manage complexity

● Makes it easier to build large

programs

● Makes it easier to debug

programs

METHOD
BENEFITS

● Methods are self-contained

● Meaning: You can use a method

someone else wrote, without

knowing how it does what it

does.

// Method to guard home from skeery cars.

public int Guard(int numCars)
{

int numAnnoyedNeighbors = 0;

for (i=0; i < numCars; i++)
{

Debug.Log(“Bark!”);
annoyedNeighbor++;

}
return numAnnoyedNeighbors;

}

METHOD DECLARATION
1. Modifiers

2. Return Type

3. Name

4. Parameter type

5. Parameter name

6. Method body

7. Method variable

declarations

8. Method statements

9. Return statement

10. Return value

1. Modifiers

2. Return Type

3. Name

4. Parameter type

5. Parameter name

6. Method body

7. Method variable

declarations

8. Method statements

9. Return statement

10. Return value

// Method to guard home from skeery cars.

public int Guard(int numCars)
{

int numAnnoyedNeighbors = 0;

for (i=0; i < numCars; i++)
{

Debug.Log(“Bark!”);
annoyedNeighbor++;

}
return numAnnoyedNeighbors;

}

METHOD DECLARATION
21 3 4 5

6

7

8

8

8

9
10

EXERCISE

● Use Unity and C# to write a

method that returns a random

number.

● Display the return value in the

console.

GOOD
METHOD
HYGIENE

● Same rules as naming variables

● Name clearly describes the method’s task

○ helps debugging

○ helps others read your code

● EXAMPLE:

public static double calculateBonus(int level)

● Parentheses indicate a method

○ VARIABLE: speedingCar

○ METHOD: speedingCar()

NAMING IS IMPORTANT

GOOD
METHOD
HYGIENE

Methods should do ONE thing.

Good names help!

calculateTaxAndPrintReturnAndSaveFile(float rate);

This method is probably doing too much

calculateTax(float rate);

This method is doing fine.

PROGRAMMING PRACTICES

GOOD
METHOD
HYGIENE

PROGRAMMING PRACTICES

Avoid duplication

Avoid duplication

Avoid duplication

Avoid duplication

Avoid duplication

Avoid duplication

Avoid duplication

Avoid duplication

Avoid duplication

GOOD
METHOD
HYGIENE

Try not to repeat code.

Anything that repeats,

might need to be made

into a method.

WHY?

PROGRAMMING PRACTICES

ONLY ONE return value

OR none: void

● void: means nothing

● A method that returns void returns...

RETURNING VALUES

ONLY ONE return value

OR none: void

● void: means nothing

● A method that returns void returns...

RETURNING VALUES
NOTHING

// Method to spawn colored spheres.

public void SpawnSpheres(int numSpheres, Vector3
location, color sphereColor)

{

// fill body in later

}

PARAMETERS

// Method to spawn colored spheres.

public void SpawnSpheres(int numSpheres, Vector3
location, color sphereColor)

{

// fill body in later

}

PARAMETERS

● Any number of parameters

● Separate parameters with commas

// Method to spawn colored spheres.

public void SpawnSpheres(int numSpheres, Vector3
location, color sphereColor)

{

// fill body in later

}

PARAMETERS

OR

// Method to roll a die.
public int rollDie()

//Method to grow all plants on screen

public void growPlants()

NO PARAMETERS

private int dieResult;

// roll die and assign result
dieResult = rollDie()

// it just rained, now grow plants

growPlants()

CALLING A METHOD
C’mere, method!

KEEP IN MIND
// Method to guard home from skeery cars.

public int Guard(int numCars)
{

int numAnnoyedNeighbors = 0;

for (i=0; i < numCars; i++)
{

Debug.Log(“Bark!”);
annoyedNeighbor++;

}
return numAnnoyedNeighbors;

}

KEEP IN MIND: SCOPE
// Method to guard home from skeery cars.

public int Guard(int numCars)
{

int numAnnoyedNeighbors = 0;

for (i=0; i < numCars; i++)
{

Debug.Log(“Bark!”);
annoyedNeighbor++;

}
return numAnnoyedNeighbors;

}

How many annoyed
neighbors?

KEEP IN MIND: SCOPE
// Method to guard home from skeery cars.

public int Guard(int numCars)
{

int numAnnoyedNeighbors = 0;

for (i=0; i < numCars; i++)
{

Debug.Log(“Bark!”);
annoyedNeighbor++;

}
return numAnnoyedNeighbors;

}

How many annoyed
neighbors?

KEEP IN MIND: SCOPE
// Method to guard home from skeery cars.

public int Guard(int numCars)
{

int numAnnoyedNeighbors = 0;

for (i=0; i < numCars; i++)
{

Debug.Log(“Bark!”);
annoyedNeighbor++;

}
return numAnnoyedNeighbors;

}

How many annoyed
neighbors?

KEEP IN MIND: SCOPE
// Method to guard home from skeery cars.

public int Guard(int numCars)
{

int numAnnoyedNeighbors = 0;

for (i=0; i < numCars; i++)
{

Debug.Log(“Bark!”);
annoyedNeighbor++;

}
return numAnnoyedNeighbors;

}

What is the value of i?

KEEP IN MIND: SCOPE
// Method to guard home from skeery cars.

public int Guard(int numCars)
{

int numAnnoyedNeighbors = 0;

for (i=0; i < numCars; i++)
{

Debug.Log(“Bark!”);
annoyedNeighbor++;

}
return numAnnoyedNeighbors;

}

What is the value of i?

KEEP IN MIND: SCOPE
// Method to guard home from skeery cars.

public int Guard(int numCars)
{

int numAnnoyedNeighbors = 0;

for (i=0; i < numCars; i++)
{

Debug.Log(“Bark!”);
annoyedNeighbor++;

}
return numAnnoyedNeighbors;

}

What is the value of i?

KEEP IN MIND: SCOPE
// Method to guard home from skeery cars.

public int Guard(int numCars)
{

int numAnnoyedNeighbors = 0;

for (i=0; i < numCars; i++)
{

Debug.Log(“Bark!”);
annoyedNeighbor++;

}
return numAnnoyedNeighbors;

}

What is the value of i?

KEEP IN MIND: SCOPE
// Method to guard home from skeery cars.

public int Guard(int numCars)
{

int numAnnoyedNeighbors = 0;

for (i=0; i < numCars; i++)
{

Debug.Log(“Bark!”);
annoyedNeighbor++;

}
return numAnnoyedNeighbors;

}
What is the value of i?

SCOPE

● Where a variable is declared
determines its scope

● Scope is where that variable can
referenced
○ reference: used, assigned,

altered, read

● A variable declared inside a method
cannot be used outside it.

DEFINITION AND USE

METHODS

● Are code objects with data and

behaviors

● Do tasks for classes

● They can take parameters

● They can return a single value

○ But don’t have to: void

● They can be distinguished visually

from variables by parentheses

● Make code easier to read

● Reduce duplication

REVIEW

METHODS

● Are code objects with data and

behaviors

● Do tasks for classes

● They can take parameters

● They can return a single value

○ But don’t have to: void

● They can be distinguished visually

from variables by parentheses

● Make code easier to read

● Reduce duplication

REVIEW

METHODS

● Are code objects with data and

behaviors

● Do tasks for classes

● They can take parameters

● They can return a single value

○ But don’t have to: void

● They can be distinguished visually

from variables by parentheses

● Make code easier to read

● Reduce duplication

REVIEW

METHODS

● Are code objects with data and

behaviors

● Do tasks for classes

● They can take parameters

● They can return a single value

○ But don’t have to: void

● They can be distinguished visually

from variables by parentheses

● Make code easier to read

● Reduce duplication

REVIEW

METHODS

● Are code objects with data and

behaviors

● Do tasks for classes

● They can take parameters

● They can return a single value

○ But don’t have to: void

● They can be distinguished visually

from variables by parentheses

● Make code easier to read

● Reduce duplication

REVIEW

METHODS

● Are code objects with data and

behaviors

● Do tasks for classes

● They can take parameters

● They can return a single value

○ But don’t have to: void

● They can be distinguished visually

from variables by parentheses

● Make code easier to read

● Reduce duplication

REVIEW

METHODS

● Are code objects with data and

behaviors

● Do tasks for classes

● They can take parameters

● They can return a single value

○ But don’t have to: void

● They can be distinguished visually

from variables by parentheses

● Make code easier to read

● Reduce duplication

REVIEW

NEXT UP

LAB

