
PROGRAMMING
LANGUAGES

PALIMPSEST

PROGRAMMING LANGUAGES

● Definition

● Purpose

● High Level Languages

● Low Level Languages

● EXERCISE

PROGRAMMING LANGUAGES

What are they?

“The Analytical Engine has no
pretensions whatever to originate
anything. It can do whatever we

know how to order it to perform...

But it is likely to exert an indirect
and reciprocal influence on

science itself.”
Remember...

01000100011011110010000
00111100101101111011101
01001000000111001101110
00001100101011000010110
10110010000001100010011
01001011011100110000101
11001001111001000011010
0001010?

Uh… yeah… be
right with you.

MOST PEOPLE DON’T SPEAK

Don’t look so shocked, Neo.

It’s true.

BUT WE
CAN GET

THERE

...it’s a process... ...with many constraints...

● You write programs in a High Level Language

● the Compiler translates that

● into the Low Level, Assembly Language

● the Assembler translates that

● into Machine Language (binary!)

● the Control Unit interprets that

● for the Microarchitecture

● where the Microsequencer interprets the binary

● for the Logic-Design at the Device Level

● made up of Semiconductors / Silicon Transistors

Compiler

Assembler

Control Unit

Microsequencer

Frosting

More frosting

High Level Language

Low Level Language

Binary

Microarchitecture

Logic-Design at Device

Semiconductors /
Transistors

Atoms / Electrons,
Quantum Dynamics

Constraints… Let's Break It Down

...and CONSTRAINED by the properties of Atoms,

Electrons, and Quantum Dynamics!

High Level
Languages

● C/C++/C#, Java, Fortran, Lisp, etc.

● Used by application programmers and

systems programmers

● Can we build machines executing HLL

right away?

● Compiler’s job is not only translating

Low Level
Languages

Assembly

● More primitive instructions than HLL

● English version of the machine

language + some more

● User mode and kernel mode

● Can we go from this level to HLL?

ISA

Instruction Set
Architecture

A very important abstraction

● interface between low-level software

and hardware

● advantage: different implementations

of the same architecture

● disadvantage: sometimes prevents

using new innovations

ISA

Instruction Set
Architecture

Modern instruction set architectures:

● X86_64

● IA-32

● PowerPC

● MIPS

● SPARC

● ARM

● and more...

Instructions

● Language of the Machine

● Platform-specific

● A limited set of machine language

commands "understood" by

hardware

○ ADD, LOAD, STORE, RET, etc.

● We’ll talk MIPS instruction set

architecture and x86 instruction set

architecture

Microarchitecture

● Resources and techniques used to

implement the ISA

○ Pentium IV implements the x86 ISA

○ Motorola G4 implements the Power PC

ISA

● Register files, ALU, Fetch unit, etc.

● Realize intended cost/performance

goals

● Interpretation done by the control

unit

Logic-Design

● Gates

● Multiplexers, decoders, PLA, etc.

● Synchronous (i.e. clocked) : the most

widely used

● Asynchronous

Device

● Transistors and wires

● Implement the digital logic gates

● Lower level:

○ Solid state physics

○ Machine looks more analog

than digital at that level!

Device

● Transistors and wires

● Implement the digital logic gates

● Lower level:

○ Solid state physics

○ Machine looks more analog

than digital at that level!

We will use C#

HOW TO BEGIN?

Before you write
one line, type one

character…

WHAT IS MY GOAL?

THEN
What information do I have?
What information do I need?

Starting Point

Goal

EXERCISE

Pseudocode

Write out the steps

Programmer
Writes Code

Processor
Processes and

displays results
DISPLAYS

Program
Compiles Code

into Binary

W
RIT

ES

T
R

A
N

S
L

A
T

E
S

DISPLAYS

Here! Enjoy.

010001000110010101101
100011010010110001101
101001011011110111010
101110011001000010010
000001010100011010000
110000101101110011010
110010000001111001011
011110111010100100001

(Delicious! Thank you!)

Lab

NEXT UP

